Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Int Immunopharmacol ; 119: 110262, 2023 Jun.
Article in English | MEDLINE | ID: covidwho-2311217

ABSTRACT

The coronavirus disease 2019, i.e., the COVID-19 pandemic, caused by a highly virulent and transmissible pathogen, has profoundly impacted global society. One approach to combat infectious diseases caused by pathogenic microbes is using mucosal vaccines, which can induce antigen-specific immune responses at both the mucosal and systemic sites. Despite its potential, the clinical implementation of mucosal vaccination is hampered by the lack of safe and effective mucosal adjuvants. Therefore, developing safe and effective mucosal adjuvants is essential for the fight against infectious diseases and the widespread clinical use of mucosal vaccines. In this study, we demonstrated the potent mucosal adjuvant effects of intranasal administration of sodium nitroprusside (SNP), a known nitric oxide (NO) donor, in mice. The results showed that intranasal administration of ovalbumin (OVA) in combination with SNP induced the production of OVA-specific immunoglobulin A in the mucosa and increased serum immunoglobulin G1 levels, indicating a T helper-2 (Th2)-type immune response. However, an analog of SNP, sodium ferrocyanide, which does not generate NO, failed to show any adjuvant effects, suggesting the critical role of NO generation in activating an immune response. In addition, SNPs facilitated the delivery of antigens to the lamina propria, where antigen-presenting cells are located, when co-administered with antigens, and also transiently elicited the expression of interleukin-6, interleukin-1ß, granulocyte colony-stimulating factor, C-X-C motif chemokine ligand 1, and C-X-C motif chemokine ligand 2 in nasal tissue. These result suggest that SNP is a dual-functional formulation with antigen delivery capabilities to the lamina propria and the capacity to activate innate immunity. In summary, these results demonstrate the ability of SNP to induce immune responses via an antigen-specific Th2-type response, making it a promising candidate for further development as a mucosal vaccine formulation against infectious diseases.


Subject(s)
COVID-19 , Vaccines , Mice , Animals , Humans , Administration, Intranasal , Nitroprusside , Antibody Formation , Ligands , Pandemics , Mucous Membrane , Adjuvants, Immunologic , Antigens , Immunity, Innate , Chemokines , Immunity, Mucosal , Mice, Inbred BALB C
2.
Int Immunopharmacol ; 101(Pt A): 108280, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1487771

ABSTRACT

The COVID-19 pandemic, caused by a highly virulent and transmissible pathogen, has proven to be devastating to society. Mucosal vaccines that can induce antigen-specific immune responses in both the systemic and mucosal compartments are considered an effective measure to overcome infectious diseases caused by pathogenic microbes. We have recently developed a nasal vaccine system using cationic liposomes composed of 1,2-dioleoyl-3-trimethylammonium-propane and cholesteryl 3ß-N-(dimethylaminoethyl)carbamate in mice. However, the comprehensive molecular mechanism(s), especially the host soluble mediator involved in this process, by which cationic liposomes promote antigen-specific mucosal immune responses, remain to be elucidated. Herein, we show that intranasal administration of cationic liposomes elicited interleukin-6 (IL-6) expression at the site of administration. Additionally, both nasal passages and splenocytes from mice nasally immunized with cationic liposomes plus ovalbumin (OVA) were polarized to produce IL-6 when re-stimulated with OVA in vitro. Furthermore, pretreatment with anti-IL-6R antibody, which blocks the biological activities of IL-6, attenuated the production of OVA-specific nasal immunoglobulin A (IgA) but not OVA-specific serum immunoglobulin G (IgG) responses. In this study, we demonstrated that IL-6, exerted by nasally administered cationic liposomes, plays a crucial role in antigen-specific IgA induction.


Subject(s)
Immunity, Mucosal/immunology , Immunoglobulin A/metabolism , Interleukin-6/immunology , Vaccines/immunology , Administration, Intranasal , Animals , Antibody Formation/drug effects , Antigens/immunology , COVID-19/prevention & control , Cations/immunology , Cations/therapeutic use , Fatty Acids, Monounsaturated/immunology , Fatty Acids, Monounsaturated/therapeutic use , Female , Immunity, Mucosal/drug effects , Immunoglobulin G/blood , Interleukin-6/antagonists & inhibitors , Interleukin-6/genetics , Interleukin-6/metabolism , Liposomes/immunology , Liposomes/therapeutic use , Mice , Nasal Mucosa/immunology , Nasal Mucosa/metabolism , Ovalbumin/immunology , Quaternary Ammonium Compounds/immunology , Quaternary Ammonium Compounds/therapeutic use , Spleen/metabolism , Vaccines/administration & dosage
SELECTION OF CITATIONS
SEARCH DETAIL